हिंदी

Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = { X ( X − 2 ) } 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?

योग

उत्तर

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[f\left( x \right) = \left\{ x\left( x - 2 \right) \right\}^2 \]

\[ = \left( x^2 - 2x \right)^2 \]

\[ = x^4 + 4 x^2 - 4 x^3 \]

\[f'\left( x \right) = 4 x^3 + 8x - 12 x^2 \]

\[ = 4x \left( x^2 - 3x + 2 \right)\]

\[ = 4x \left( x - 1 \right)\left( x - 2 \right)\]

\[\text { Here, 0, 1 and 2 are the critical points}.\]

\[\text { The possible intervals are }\left( - \infty , 0 \right),\left( 0, 1 \right),\left( 1, 2 \right)\text { and }\left( 2, \infty \right).\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 4x \left( x - 1 \right)\left( x - 2 \right) > 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x - 2 \right) > 0\]

\[ \Rightarrow x \in \left( 0, 1 \right) \cup \left( 2, \infty \right) \]

\[\text { So,f(x)is increasing on x } \in \left( 0, 1 \right) \cup \left( 2, \infty \right) . \]

\[\text { For } f(x)\text {  to be decreasing, we must have } \]

\[f'(x) < 0\]

\[ \Rightarrow 4x\left( x - 1 \right)\left( x - 2 \right) < 0\]

\[ \Rightarrow x\left( x - 1 \right)\left( x - 2 \right) < 0\]

\[ \Rightarrow x \in \left( - \infty , 0 \right) \cup \left( 1, 2 \right)\]

\[\text { So, f(x) is decreasing on x } \in \left( - \infty , 0 \right) \cup \left( 1, 2 \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 1.25 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


The function f (x) = 2 – 3 x is ____________.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×