Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 2 x^3 - 24x + 7\]
\[f'\left( x \right) = 6 x^2 - 24\]
\[ = 6 \left( x^2 - 4 \right)\]
\[ = 6 \left( x + 2 \right)\left( x - 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x + 2 \right)\left( x - 2 \right) > 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x - 2 \right) > 0 \left[ \text { Since } 6 > 0, 6 \left( x + 2 \right)\left( x - 2 \right) > 0 \Rightarrow \left( x + 2 \right)\left( x - 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 2\]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 2, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , - 2 \right) \cup \left( 2, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x + 2 \right)\left( x - 2 \right) < 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x - 2 \right) < 0 \left[ \text { Since }6 > 0, 6 \left( x + 2 \right)\left( x - 2 \right) < 0 \Rightarrow \left( x + 2 \right)\left( x - 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 2\]
\[ \Rightarrow x \in \left( - 2, 2 \right)\]
\[\text { So },f(x)\text { is decreasing on }x \in \left( - 2, 2 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Every invertible function is
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = tan-1 x is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
If f(x) = x + cosx – a then ______.