हिंदी

Write the Set of Values of 'A' for Which F(X) = Loga X is Decreasing in Its Domain ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?

योग

उत्तर

\[\text { Given }: f\left( x \right) = \log_a x\]

\[\text { Domain of the given function is }\left( 0, \infty \right).\]

\[\text { Let  }x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \]

\[\text { Since the given function is logarithmic, either a } > 1 or 0 < a < 1 . \]

\[\text { Case 1: Let }a > 1\]

\[\text { Here} , \]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 < \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So },f\left( x \right)\text { is increasing on }\left( 0, \infty \right).\]

\[\text { Case 2: Let }0 < a < 1\]

\[\text { Here, }\]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 > \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So,}f\left( x \right) \text { is decreasing on }\left( 0, \infty \right)\]

\[\text { Thus, for }0 < a < 1,f\left( x \right)\text {  is decreasing in its domain }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.3 | Q 4 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


The function f(x) = x9 + 3x7 + 64 is increasing on


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The function f(x) = sin x + 2x is ______ 


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f (x) = x2, for all real x, is ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The function `"f"("x") = "x"/"logx"` increases on the interval


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×