Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
उत्तर
\[\text { When }\left( x - a \right)\left( x - b \right)>0 \text { with} a < b, x < a \ or \ x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^2 + 2x - 5\]
\[f'\left( x \right) = 2x + 2\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 2x + 2 > 0\]
\[ \Rightarrow 2\left( x + 1 \right) > 0\]
\[ \Rightarrow x + 1 > 0\]
\[ \Rightarrow x > - 1\]
\[ \Rightarrow x \in \left( - 1, \infty \right)\]
\[\text { So,}f(x)\text { is increasing on } \left( - 1, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 2x + 2 < 0\]
\[ \Rightarrow 2\left( x + 1 \right) < 0\]
\[ \Rightarrow x + 1 < 0\]
\[ \Rightarrow x < - 1\]
\[ \Rightarrow x \in \left( - \infty , - 1 \right)\]
\[\text { So,}f(x)\text { is decreasing on }\left( - \infty , - 1 \right).\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
The function f(x) = x9 + 3x7 + 64 is increasing on
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The function f(x) = x3 - 3x is ______.
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Function given by f(x) = sin x is strictly increasing in.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.