Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
उत्तर
\[\text { When }\left( x - a \right)\left( x - b \right)>0 \text { with} a < b, x < a \ or \ x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^2 + 2x - 5\]
\[f'\left( x \right) = 2x + 2\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 2x + 2 > 0\]
\[ \Rightarrow 2\left( x + 1 \right) > 0\]
\[ \Rightarrow x + 1 > 0\]
\[ \Rightarrow x > - 1\]
\[ \Rightarrow x \in \left( - 1, \infty \right)\]
\[\text { So,}f(x)\text { is increasing on } \left( - 1, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 2x + 2 < 0\]
\[ \Rightarrow 2\left( x + 1 \right) < 0\]
\[ \Rightarrow x + 1 < 0\]
\[ \Rightarrow x < - 1\]
\[ \Rightarrow x \in \left( - \infty , - 1 \right)\]
\[\text { So,}f(x)\text { is decreasing on }\left( - \infty , - 1 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Every invertible function is
Function f(x) = loga x is increasing on R, if
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
The function f(x) = x3 - 3x is ______.
For every value of x, the function f(x) = `1/7^x` is ______
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f(x) = tanx – x ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
Which of the following graph represent the strictly increasing function.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.