मराठी

Prove that the Function F(X) = Loga X is Increasing on (0, ∞) If a > 1 and Decreasing on (0, ∞), If 0 < a < 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?

बेरीज

उत्तर

\[f\left( x \right) = \log_a x\]

\[\text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \]

\[\text { Case 1: Let a } > 1\]

\[\text{ Here },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 < \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[ \therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So,}f\left( x \right) \text { is increasing on }\left( 0, \infty \right).\]

\[\text { Case 2: Let }0 < a < 1\]

\[\text { Here },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 > \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[ \therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So },f\left( x \right)\text {  is decreasing on }\left( 0, \infty \right).\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 2 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


Function f(x) = x3 − 27x + 5 is monotonically increasing when


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = loga x is increasing on R, if


The function f(x) = x9 + 3x7 + 64 is increasing on


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The function f(x) = x3 - 3x is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Which of the following functions is decreasing on `(0, pi/2)`?


The function f(x) = tan-1 x is ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


If f(x) = x + cosx – a then ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×