Advertisements
Advertisements
प्रश्न
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
उत्तर
\[f\left( x \right) = \cos x + a^2 x + b\]
\[f'\left( x \right) = a^2 - \sin x\]
\[\text { Given :f(x) is strictly increasing on R }.\]
\[ \Rightarrow f'\left( x \right) > 0, \forall x \in R\]
\[ \Rightarrow a^2 - \sin x > 0, \forall x \in R\]
\[ \Rightarrow a^2 > \sin x, \forall x \in R\]
\[\text { We know that the maximum value of sin x is 1 }.\]
\[\text { Since } a^2 > \sin x, a^2\text { is always greater than 1 }.\]
\[ \Rightarrow a^2 > 1\]
\[ \Rightarrow a^2 - 1 > 0\]
\[ \Rightarrow \left( a + 1 \right)\left( a - 1 \right) > 0\]
\[ \Rightarrow a \in ( - \infty , - 1) \cup (1, \infty )\]
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The function f(x) = 9 - x5 - x7 is decreasing for
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The function `1/(1 + x^2)` is increasing in the interval ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The function f (x) = 2 – 3 x is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.