Advertisements
Advertisements
प्रश्न
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
उत्तर
\[f\left( x \right) = x^3 - ax\]
\[f'\left( x \right) = 3 x^2 - a\]
\[\text { Given }:f\left( x \right)\text { is increasing on R }.\]
\[ \Rightarrow f'\left( x \right) \geq 0 \forall x \in R\]
\[ \Rightarrow 3 x^2 - a \geq 0 \forall x \in R\]
\[ \Rightarrow a \leq 3 x^2 \forall x \in R\]
\[\text { The least value of } 3 x^2 \text { is } 0.\]
\[\therefore a \leq 0\]
APPEARS IN
संबंधित प्रश्न
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Function f(x) = | x | − | x − 1 | is monotonically increasing when
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.