Advertisements
Advertisements
प्रश्न
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
उत्तर
\[f\left( x \right) = \sin x - bx + c\]
\[f'\left( x \right) = \cos x - b\]
\[\text { Given }:f\left( x \right) \text { is decreasing on R }.\]
\[f'\left( x \right) < 0, \forall x \in R\]
\[ \Rightarrow \cos x - b < 0, \forall x \in R\]
\[\Rightarrow\cos x - b < 0, \forall x \in R \]
\[ \Rightarrow \cos x < b, \forall x \in R\]
\[ \Rightarrow b \geqslant 1 \left[ \because - 1 \leqslant \cos x \leqslant 1 \right]\]
APPEARS IN
संबंधित प्रश्न
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Every invertible function is
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The function `1/(1 + x^2)` is increasing in the interval ______
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x + cosx – a then ______.