Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 2 x^3 - 12 x^2 + 18x + 15\]
\[f'\left( x \right) = 6 x^2 - 24x + 18\]
\[ = 6 \left( x^2 - 4x + 3 \right)\]
\[ = 6 \left( x - 1 \right)\left( x - 3 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x - 1 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \left[ \text { Since } 6 > 0, 6 \left( x - 1 \right)\left( x - 3 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \right]\]
\[ \Rightarrow x < 1 \ or \ x > 3\]
\[ \Rightarrow x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right)\]
\[\text { So },f(x)\text { is increasing on }\left( - \infty , 1 \right) \cup \left( 3, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x - 1 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \left[ \text { Since} 6 > 0, 6 \left( x - 1 \right)\left( x - 3 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \right]\]
\[ \Rightarrow 1 < x < 3 \]
\[ \Rightarrow x \in \left( 1, 3 \right)\]
\[\text { So },f(x)\text { is decreasing on }\left( 1, 3 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the logarithmic function is strictly increasing on (0, ∞).
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The function f(x) = x2 e−x is monotonic increasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
If f(x) = x + cosx – a then ______.
y = log x satisfies for x > 1, the inequality ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.