Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x - 5\]
\[f'\left( x \right) = 6 x^2 - 18x + 12\]
\[ = 6 \left( x^2 - 3x + 2 \right)\]
\[ = 6 \left( x - 1 \right)\left( x - 2 \right)\]
\[\text{ For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x - 1 \right)\left( x - 2 \right) > 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 2 \right) > 0 \left[ \text { Since } 6 > 0, 6 \left( x - 1 \right)\left( x - 2 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x - 2 \right) > 0 \right]\]
\[ \Rightarrow x < 1 orx > 2\]
\[ \Rightarrow x \in \left( - \infty , 1 \right) \cup \left( 2, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , 1 \right) \cup \left( 2, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x - 1 \right)\left( x - 2 \right) < 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 2 \right) < 0 \left[ \text { Since } 6 > 0, 6 \left( x - 1 \right)\left( x - 2 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x - 2 \right) < 0 \right]\]
\[ \Rightarrow 1 < x < 2\]
\[ \Rightarrow x \in \left( 1, 2 \right)\]
\[\text { So} ,f(x)\text { is decreasing on } x \in \left( 1, 2 \right) .\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
The interval in which y = x2 e–x is increasing is ______.
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Let f(x) = x3 − 6x2 + 15x + 3. Then,
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Function f(x) = loga x is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Show that f(x) = x – cos x is increasing for all x.
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f(x) = tanx – x ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Function given by f(x) = sin x is strictly increasing in.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.