मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

State whether the following statement is True or False: The function f(x) = x⋅ex(1-x) is increasing on (-12,1). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

True.

Explanation:

f(x) = `"x"*"e"^("x" (1 - "x"))`

∴ f '(x) = `"e"^("x" (1 - "x")) + "x"*"e"^("x" (1 - "x")) [1 - 2"x"]`

`= "e"^("x" (1 - "x")) [1 + "x" - 2"x"^2]`

If f(x) is increasing, then f '(x) > 0.

Consider f '(x) > 0

∴ `"e"^("x" (1 - "x")) (1 + "x" - 2"x"^2)` > 0

∴ 2x2 - x - 1 < 0

∴ (2x + 1)(x - 1) < 0

ab < 0 ⇔ a > 0 and b < 0 or a < 0 or b > 0

∴ Either (2x + 1) > 0 and (x – 1) < 0 or

(2x + 1) < 0 and (x – 1) > 0

Case 1: (2x + 1) > 0 and (x – 1) < 0

∴ x > `-1/2`    and    x < 1

i.e., x ∈ `(-1/2, 1)`

Case 2: (2x + 1) < 0 and (x – 1) > 0

∴ x < `- 1/2`       and x > 1

which is not possible.

∴ f(x) is increasing on `(-1/2, 1)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Applications of Derivatives - Miscellaneous Exercise 4 [पृष्ठ ११४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Applications of Derivatives
Miscellaneous Exercise 4 | Q 3.4 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Every invertible function is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Function f(x) = ax is increasing on R, if


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


Which of the following functions is decreasing on `(0, pi/2)`?


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The function `"f"("x") = "x"/"logx"` increases on the interval


Which of the following graph represent the strictly increasing function.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×