Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
पर्याय
True
False
उत्तर
This statement is True.
संबंधित प्रश्न
Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]
Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|
Prove that the following function do not have maxima or minima:
g(x) = logx
What is the maximum value of the function sin x + cos x?
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`
Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .
Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20
Solve the following:
Find the maximum and minimum values of the function f(x) = cos2x + sinx.
Determine the maximum and minimum value of the following function.
f(x) = `x^2 + 16/x`
The function f(x) = x log x is minimum at x = ______.
Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______
If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.
- Express ‘h’ in terms of ‘r’, using the given volume.
- Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
- Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
- Calculate the minimum cost for painting the dustbin.