Advertisements
Advertisements
प्रश्न
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`
उत्तर
Let the radius of the sphere = r
Radius of cone = R
Height of the cone = AM
= OA + OM
= r + r cos θ
= r(1 + cosθ)
where ∠BOM = θ
BC = diameter of the base of the cone
∴ Radius of cone = r sin θ
Volume of cone V = `1/3 pi (r sin theta)^2 xx r (1 + cos theta)` ....`[because "volume of cone" = 1/3 pir^2 h]`
`= 1/3 pir^3 sin^2 theta (1 + cos theta)`
On differentiating,
`(dV)/(d theta) = 1/3 pir^3 [2 sin theta cos theta (1 + cos theta) + sin^2 theta (- sin theta)]`
`= 1/3 pir^3 [2 sin theta cos theta (1 + cos theta) - sin^3 theta]`
`= 1/3 pir^3 sin theta [2 cos theta (1 + cos theta) - sin^2 theta]`
`= 1/3 pir^3 sin theta [2 cos theta + 2 cos^2 theta - 1+ cos^2 theta]`
`= 1/3 pir^3 sin theta [3 cos^2 theta + 2 cos theta - 1]`
`= 1/3 pir^3 sin theta (cos theta + 1)(3 cos theta - 1)`
For maximum and minimum, `(dV)/(d theta) = 0`
⇒ cos θ ≠ - 1
⇒ θ ≠ π
∴ (3 cos θ - 1) = 0
⇒ `cos theta = 1/3`
In the interval `(0, pi/2)` cos θ is decreasing, cos θ increases as θ decreases and decreases as θ increases.
⇒ at cos θ = `1/3`
The sign of `(dV)/(d theta)` changes from positive to negative as θ passes through this point.
Hence V is highest at this point.
Height of the cone = `r (1 + cos theta) = r(1 + 1/3)`
`= r xx 4/3`
= `(4r)/3`
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
g(x) = x3 − 3x
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) =x^3, x in [-2,2]`
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.
Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.
Find the maximum and minimum of the following functions : f(x) = x log x
Find the maximum and minimum of the following functions : f(x) = `logx/x`
Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.
Choose the correct option from the given alternatives :
If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.
Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.
Divide the number 20 into two parts such that their product is maximum.
If f(x) = x.log.x then its maximum value is ______.
The function f(x) = x log x is minimum at x = ______.
Divide the number 20 into two parts such that their product is maximum
A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.
Solution: Let the dimensions of the rectangle be x cm and y cm.
∴ 2x + 2y = 36
Let f(x) be the area of rectangle in terms of x, then
f(x) = `square`
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme value, f'(x) = 0, we get
x = `square`
∴ f''`(square)` = – 2 < 0
∴ Area is maximum when x = `square`, y = `square`
∴ Dimensions of rectangle are `square`
By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima
Solution: f(x) = x3 – 9x2 + 24x
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme values, f'(x) = 0, we get
x = `square` or `square`
∴ f''`(square)` = – 6 < 0
∴ f(x) is maximum at x = 2.
∴ Maximum value = `square`
∴ f''`(square)` = 6 > 0
∴ f(x) is maximum at x = 4.
∴ Minimum value = `square`
Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______
The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.
The maximum value of sin x . cos x is ______.
Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.
A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)
For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`
A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.
The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.
If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.
The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.
The minimum value of 2sinx + 2cosx is ______.
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.
The minimum value of the function f(x) = xlogx is ______.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?