मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum. Solution: Let the dimensions of the rectangle be x cm an - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`

रिकाम्या जागा भरा
बेरीज

उत्तर

Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

∴ x + y = 18

∴ y = 18 – x

Let f(x) be the area of rectangle in terms of x, then

f(x) = = xy = x(18 – x) = 18x – x2

∴ f'(x) = 18 – 2x

∴ f''(x) = – 2

For extreme value, f'(x) = 0, we get

18 – 2x = 0

∴ 18 = 2x

∴ x = 9

∴ f''(9) = – 2 < 0

∴ Area is maximum when x = 9, y = 18 – 9 = 9

∴ Dimensions of rectangle are 9 cm × 9 cm.  

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.4: Applications of Derivatives - Q.6

संबंधित प्रश्‍न

A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Show that among rectangles of given area, the square has least perimeter.


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of `(1/x)^x` is ______.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×