मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima Solution: f(x) = x3 – 9x2 + 24x ∴ f'(x) = □ ∴ f''(x) = □ For extreme values, f'(x) = 0, we get x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`

रिकाम्या जागा भरा
बेरीज

उत्तर

f(x) = x3 – 9x2 + 24x

∴ f'(x) = 3x2 – 18x + 24

∴ f''(x) = 6x – 18

For extreme values, f'(x) = 0, we get

3x2 – 18x + 24

∴ x2 – 6x + 8 = 0

∴ x2 – 4x – 2x + 8 = 0

∴ x(x – 4) – 2(x – 4) = 0

∴ (x – 4)(x – 2) = 0

x = 2 or 4

∴ f''(2) =  6(2) – 18

= 12 – 18

= – 6 < 0 

∴ f(x) is maximum at x = 2.

∴ Maximum value = f(2)

= (2)3 – 9(2)2 + 24(2)

= 8 – 36 + 48

20

∴ f''(4) = 6(4) – 18

= 24 – 18

= 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = f(4)

= (4)3 – 9(4)2 + 24(4)

= 64 – 144 + 96

16

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.4: Applications of Derivatives - Q.6

संबंधित प्रश्‍न

Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


If x + y = 3 show that the maximum value of x2y is 4.


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = `square` and f''(x) = `square`

f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×