Advertisements
Advertisements
प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`
उत्तर
If θ is the semi-vertical angle and l is the given slant height, then radius of base
= l sin θ, height = l cos θ ... (∵ ABC is right-angled triangle)
and volume of cone = `1/3 pir^2h`
⇒` V = 1/3 pi (l sin theta)^2 lcos theta 1/3 pil^3 sin^2 theta costheta`
Where V be the volume.
`(dV)/(d theta) = 1/3 pil^3 {(sin^2 theta) (- sin theta) + cos theta xx 2 sin theta cos theta}`
`= 1/3 pil^3 sin theta [-sin^2 theta + 2 (1 - sin^2 theta)]`
`= 1/3 pil^3 sin theta cos^2 theta [2 sec^2 theta - 3 tan^2 theta]`
`= 1/3 pil^3 sin theta cos^2 theta [2 - tan^2 theta]`
For maximum / minimum volume, let `(dV)/(d theta) = 0`
`= 1/3 pil^3 sin theta cos^2 theta (2 - tan^2 theta) = 0`
`= tan theta = sqrt 2`
`= theta = tan^-1 sqrt2`
`= (d^2V)/(d theta)^2 = 1/3 pil^3 cos^3 theta (2 - 7 tan^2 theta)`
`= ((d^2V)/(d theta^2))_(tan theta= sqrt2)`
`= 1/3 pi l^3 (1/sqrt3)^3 (2 - 7 xx 2)`
`= (4pil^3)/(3sqrt3) < 0`
Thus, V is maximum when
`tan theta = sqrt 2 or theta = tan^-1 sqrt 2`
i.e., when the semi - vertical angle of the cone is `tan ^-1 sqrt2`.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
Find the maximum and minimum values of x + sin 2x on [0, 2π].
Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle.
Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`
Show that among rectangles of given area, the square has least perimeter.
Solve the following:
A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.
AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.
The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.
The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.
The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.
The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.
Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
Determine the minimum value of the function.
f(x) = 2x3 – 21x2 + 36x – 20