मराठी

Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum. - Mathematics

Advertisements
Advertisements

प्रश्न

Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.

बेरीज

उत्तर

Let the number be x and y and let p = x2y2 and

x + y = 35           ... (i)

⇒ p = (35 - y)2y2               ... [from (i)]

Now, `(dp)/dy = (35 - y)^2 (5y^4) + y^5 xx 2 (35 - y) (-1)`

y4 (35 - y) {5 (35 - y) - 2y}

= y4 (35 - y) (175 - 7y)

For maximum p, let `(dp)/dy = 0`

⇒ y4 (35 - y) (175 - 7y) = 0

⇒ 175 - 7y = 0           ...(∵ 0 < y < 35)

⇒ y = 25

Now, 

`((d^2p)/dy^2) = 4 (35 - y) (175 - 7y)y^3 + y^4 (-1) (175 - 7y) + y^4 (35 - y) (-7)`

⇒ `((d^2p)/dy^2)_(y = 25) < 0`

and p has a maximum value at y = 25

∴ The required numbers are x = 35 - 25 = 10 and y = 25

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.5 | Q 15 | पृष्ठ २३३

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].


Find two numbers whose sum is 24 and whose product is as large as possible.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Divide the number 20 into two parts such that sum of their squares is minimum.


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


If x + y = 3 show that the maximum value of x2y is 4.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.


The maximum value of sin x . cos x is ______.


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


Divide 20 into two ports, so that their product is maximum.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×