Advertisements
Advertisements
Question
Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.
Solution
Let the number be x and y and let p = x2y2 and
x + y = 35 ... (i)
⇒ p = (35 - y)2y2 ... [from (i)]
Now, `(dp)/dy = (35 - y)^2 (5y^4) + y^5 xx 2 (35 - y) (-1)`
y4 (35 - y) {5 (35 - y) - 2y}
= y4 (35 - y) (175 - 7y)
For maximum p, let `(dp)/dy = 0`
⇒ y4 (35 - y) (175 - 7y) = 0
⇒ 175 - 7y = 0 ...(∵ 0 < y < 35)
⇒ y = 25
Now,
`((d^2p)/dy^2) = 4 (35 - y) (175 - 7y)y^3 + y^4 (-1) (175 - 7y) + y^4 (35 - y) (-7)`
⇒ `((d^2p)/dy^2)_(y = 25) < 0`
and p has a maximum value at y = 25
∴ The required numbers are x = 35 - 25 = 10 and y = 25
APPEARS IN
RELATED QUESTIONS
Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`h(x) = sinx + cosx, 0 < x < pi/2`
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = x/2 + 2/x, x > 0`
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`
The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`
Find the point on the straight line 2x+3y = 6, which is closest to the origin.
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x
Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.
Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.
Solve the following : A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.
Solve the following:
A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.
Determine the maximum and minimum value of the following function.
f(x) = `x^2 + 16/x`
A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
If x + y = 3 show that the maximum value of x2y is 4.
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______
If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.
The minimum value of the function f(x) = 13 - 14x + 9x2 is ______
The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.
The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is
The maximum value of the function f(x) = `logx/x` is ______.
Read the following passage and answer the questions given below.
|
- Is the function differentiable in the interval (0, 12)? Justify your answer.
- If 6 is the critical point of the function, then find the value of the constant m.
- Find the intervals in which the function is strictly increasing/strictly decreasing.
OR
Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.
A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.
The minimum value of 2sinx + 2cosx is ______.
The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.
A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
If x + y = 8, then the maximum value of x2y is ______.
Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.