English

Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π]. - Mathematics

Advertisements
Advertisements

Question

Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].

Sum

Solution

Here, f(x) = cos2 x + sin x, x ϵ (0, π)

∴ f'(x) = 2 cos x (- sin x) + cos x

= cos x (- 2 sin x + 1)

For maximum / minimum values, f (x) = 0

⇒ cos x (- 2 sin x + 1) = 0

`=> sin x = 1/2 => x = pi/6` and cos x = 0 ⇒ x = `pi/2`

In the interval [0, π], the critical points are x = `pi/6` and x = `pi/2`.

∴ f(0) = cos2 0 + sin 0 = 1

`f(pi/6) = cos^2  pi/6 + sin  pi/6`

`= (sqrt3/2)^2 + 1/2`

`= 3/4 + 1/2`

`= (3 + 2)/4 = 5/4`

`f(pi/2) = cos^2  pi/2 + sin  pi/2`

= 0 + 1 = 1

Hence, the absolute maximum and minimum value are `5/4` and 1, respectively.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.6 [Page 243]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.6 | Q 14 | Page 243

RELATED QUESTIONS

Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Show that among rectangles of given area, the square has least perimeter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


Divide the number 20 into two parts such that their product is maximum.


The function f(x) = x log x is minimum at x = ______.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


The function y = 1 + sin x is maximum, when x = ______ 


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


If y = x3 + x2 + x + 1, then y ____________.


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×