Advertisements
Advertisements
प्रश्न
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
उत्तर
Here, f(x) = cos2 x + sin x, x ϵ (0, π)
∴ f'(x) = 2 cos x (- sin x) + cos x
= cos x (- 2 sin x + 1)
For maximum / minimum values, f (x) = 0
⇒ cos x (- 2 sin x + 1) = 0
`=> sin x = 1/2 => x = pi/6` and cos x = 0 ⇒ x = `pi/2`
In the interval [0, π], the critical points are x = `pi/6` and x = `pi/2`.
∴ f(0) = cos2 0 + sin 0 = 1
`f(pi/6) = cos^2 pi/6 + sin pi/6`
`= (sqrt3/2)^2 + 1/2`
`= 3/4 + 1/2`
`= (3 + 2)/4 = 5/4`
`f(pi/2) = cos^2 pi/2 + sin pi/2`
= 0 + 1 = 1
Hence, the absolute maximum and minimum value are `5/4` and 1, respectively.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x2
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) =x^3, x in [-2,2]`
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?
Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20
Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`
Find the maximum and minimum of the following functions : f(x) = `logx/x`
The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.
Choose the correct option from the given alternatives :
If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.
Solve the following:
A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.
Determine the maximum and minimum value of the following function.
f(x) = x log x
Determine the maximum and minimum value of the following function.
f(x) = `x^2 + 16/x`
A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.
By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima
Solution: f(x) = x3 – 9x2 + 24x
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme values, f'(x) = 0, we get
x = `square` or `square`
∴ f''`(square)` = – 6 < 0
∴ f(x) is maximum at x = 2.
∴ Maximum value = `square`
∴ f''`(square)` = 6 > 0
∴ f(x) is maximum at x = 4.
∴ Minimum value = `square`
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.
Find all the points of local maxima and local minima of the function f(x) = (x - 1)3 (x + 1)2
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)
A function f(x) is maximum at x = a when f'(a) > 0.
If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.
The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.
The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.
The minimum value of the function f(x) = xlogx is ______.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.
The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.
Solution: Let x cm and y cm be the length and breadth of a rectangle.
Then its area is xy = 50
∴ `y =50/x`
Perimeter of rectangle `=2(x+y)=2(x+50/x)`
Let f(x) `=2(x+50/x)`
Then f'(x) = `square` and f''(x) = `square`
Now,f'(x) = 0, if x = `square`
But x is not negative.
∴ `x = root(5)(2) "and" f^('')(root(5)(2))=square>0`
∴ by the second derivative test f is minimum at x = `root(5)(2)`
When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`
∴ `x=root(5)(2) "cm" , y = root(5)(2) "cm"`
Hence, rectangle is a square of side `root(5)(2) "cm"`
Divide the number 100 into two parts so that the sum of their squares is minimum.