Advertisements
Advertisements
प्रश्न
A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.
उत्तर
Let the length and breadth of a rectangle be l and b respectively.
∴ Perimeter of rectangle = 2(l + b) = 108 m
∴ l + b = 54
∴ b = 54 – l ...(i)
Area of rectangle = l × b
= l(54 – l) ...[From (i)]
Let f(l) = l(54 – l)
= 54l – l2
∴ f'(l) = 54 – 2l
∴ f"(l) = – 2
Consider, f'(l) = 0
∴ 54 – 2l = 0
∴ 54 = 2l
∴ l = 27
For l = 27,
f"(27) = – 2 < 0
∴ f(l) i.e., area is maximum at l = 27
and b = 54 – 27 ...[From (i)]
= 27
∴ The dimensions of rectangle are 27 m × 27 m.
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
g(x) = x3 − 3x
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has
- local maxima
- local minima
- point of inflexion
Find the maximum and minimum of the following functions : f(x) = x log x
A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.
Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.
Solve the following : Show that a closed right circular cylinder of given surface area has maximum volume if its height equals the diameter of its base.
Solve the following : A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.
Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x
Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______
The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.
The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
If y = x3 + x2 + x + 1, then y ____________.
The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
The function `f(x) = x^3 - 6x^2 + 9x + 25` has
The maximum value of the function f(x) = `logx/x` is ______.
Let A = [aij] be a 3 × 3 matrix, where
aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, "," "otherwise"):}`
Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.
If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.
If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.
A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.
Divide the number 100 into two parts so that the sum of their squares is minimum.