Advertisements
Advertisements
प्रश्न
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
उत्तर
Given, `g (x) = 1/ (x^2 + 2)`
= `g' (x) = (-2x)/(x^2 + 2)^2`
For critical points, let g' (x) = 0
= `(-2x)/(x^2 + 2)^2 = 0`
x = 0 ....(∵ x2 + 2 ≠ 0)
`g'' (x) = (6x^2 - 4)/(x^2 + 2)^3; g'' (0) = (-4)/8 <0`
∴ g has a local maximum at x = 0 and local
maximum value is `g (0) = 1/ (0 + 2) = 1/2`
APPEARS IN
संबंधित प्रश्न
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.
Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3.
Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = sinx − cos x, 0 < x < 2π
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x3 − 6x2 + 9x + 15
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = x/2 + 2/x, x > 0`
Find the maximum and minimum values of x + sin 2x on [0, 2π].
Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .
A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle.
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.
A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?
Determine the maximum and minimum value of the following function.
f(x) = 2x3 – 21x2 + 36x – 20
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
The function f(x) = x log x is minimum at x = ______.
Find the local maximum and local minimum value of f(x) = x3 − 3x2 − 24x + 5
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.
The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.
If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.
Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.
Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.
An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?
The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.
A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.
Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.
A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.
A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.
Find the maximum and the minimum values of the function f(x) = x2ex.
If x + y = 8, then the maximum value of x2y is ______.
Divide the number 100 into two parts so that the sum of their squares is minimum.