मराठी

Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.

बेरीज

उत्तर

Here,  g(x) = x3 + 1.

g'(x) = 3x2 which is positive for x ∈ R.

g'(x) = 3x2 ≥ 0; ∀ x ∈ R

Hence g is an increasing function.

∴ It has no minimum and maximum value.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.5 | Q 1.4 | पृष्ठ २३१

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Prove that the following function do not have maxima or minima:

f(x) = ex


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


What is the maximum value of the function sin x + cos x?


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = x log x


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Divide the number 20 into two parts such that their product is maximum.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.


If x is real, the minimum value of x2 – 8x + 17 is ______.


The maximum value of `(1/x)^x` is ______.


The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The function `"f"("x") = "x" + 4/"x"` has ____________.


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×