Advertisements
Advertisements
प्रश्न
Prove that the following function do not have maxima or minima:
f(x) = ex
उत्तर
Given function, f‘(x) = ex
∴ f‘(x) = ex
= f' (x) = ex ∀ x ∈ R
f' (x) = ex > 0 ∀ x ∈ R
f has no critical point.
Thus, there is no point at which f can have an extremum.
∴ f has neither a maximum nor a minimum.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
g(x) = x3 − 3x
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Prove that the following function do not have maxima or minima:
h(x) = x3 + x2 + x + 1
Find two numbers whose sum is 24 and whose product is as large as possible.
Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.
Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is `Sin^(-1) (1/3).`
The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it.
Find the maximum and minimum of the following functions : f(x) = x log x
A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?
If x + y = 3 show that the maximum value of x2y is 4.
The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`
Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.
If x is real, the minimum value of x2 – 8x + 17 is ______.
The maximum value of `(1/x)^x` is ______.
Find all the points of local maxima and local minima of the function f(x) = (x - 1)3 (x + 1)2
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].
Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.
The function `"f"("x") = "x" + 4/"x"` has ____________.
The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.
The maximum value of the function f(x) = `logx/x` is ______.
Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.
Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.
The minimum value of the function f(x) = xlogx is ______.
The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
Find the maximum and the minimum values of the function f(x) = x2ex.
A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.
Divide the number 100 into two parts so that the sum of their squares is minimum.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) `= x sqrt(1 - x), 0 < x < 1`