Advertisements
Advertisements
प्रश्न
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
उत्तर
Let r be the radius of the circular base, h be the height and S be the total surface area of a right circular cylinder, Then S = 2πr2 + 2πrh.
Let V be the volume of the cylinder with the above dimensions.
∴ `V = pir^2h = pir^2 ((S - 2pir^2)/(2pir))`
`(∵ S = 2pir^2 + 2pirh, ∴ h = (S - 2pir^2)/(2pir))`
`= r/2 (S - 2pir^2)`
⇒ `V = (sr)/2 - pir^3`
Differentiating w.r.t. x, we get
`(dV)/(dr) = S/2- 3pir^2`
For maximum / minimum volume
`(dV)/(dr) = 0`
⇒ `S/2-3pir^2 = 0`
⇒ `r^2 = S/(6pi)`
⇒ `r = sqrt(S/(6pi))`
`(d^2V)/(dr^2) = -6pir`
and `((d^2V)/(dr^2))_(r sqrt (S/(6pi)))`
`= -6pi sqrt (S/(6pi)) < 0`
⇒ V has a maximum value at `r = sqrt (S/ (6pi))`
When `r = sqrt (S/ (6pi)), `then
`h = (S- 2pi (S/(6pi)))/ (2pi sqrt (S/ (6pi))) = (4pi (S/ (6pi)))/ (2pi sqrt (S/ (6pi)))`
⇒ `h = 2 sqrt (S/(6pi)) = 2` radius = diameter.
So volume is maximum when the height is equal to the diameter of the base.
APPEARS IN
संबंधित प्रश्न
Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.` Also, find the maximum volume.
If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Prove that the following function do not have maxima or minima:
h(x) = x3 + x2 + x + 1
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.
For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.
Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?
Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .
The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it.
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x
Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.
Show that among rectangles of given area, the square has least perimeter.
Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.
Solve the following:
Find the maximum and minimum values of the function f(x) = cos2x + sinx.
A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima
Solution: f(x) = x3 – 9x2 + 24x
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme values, f'(x) = 0, we get
x = `square` or `square`
∴ f''`(square)` = – 6 < 0
∴ f(x) is maximum at x = 2.
∴ Maximum value = `square`
∴ f''`(square)` = 6 > 0
∴ f(x) is maximum at x = 4.
∴ Minimum value = `square`
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.
If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.
Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
The function `"f"("x") = "x" + 4/"x"` has ____________.
The maximum value of the function f(x) = `logx/x` is ______.
Divide 20 into two ports, so that their product is maximum.
Read the following passage and answer the questions given below.
In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1. |
- If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
- Find the critical point of the function.
- Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
OR
Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.
The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.
Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.