Advertisements
Advertisements
प्रश्न
Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.` Also, find the maximum volume.
उत्तर १
Given that the radius of the sphere is R,.
Let r and h be the radius and height of the inscribed cylinder, respectively.
From the given figure, we have `h=2sqrt(R^2-r^2)`
The volume (V) of the cylinder is given by,
`V=pir^2h=2pir^2sqrt(R^2-r^2)`
`therefore (dV)/(dr)=4pirsqrt(R^2-r^2)+(2pir^2(-2r))/(2sqrt(R^2-r^2))`
`=(4pirR^2-6pir^3)/sqrt(R^2-r^2)`
for maxima or minima, `(dV)/(dr) =0 `
`(4pirR^2-6pir^3)=0`
`r^2=(2R^2)/3`
Now `,(d^2V)/(dr^2)=(sqrt(R^2-r^2)(4piR^2-18pir^2)-(4piR^2-6pir^3)(-2r)/(2sqrt(R^2-r^2)))/(R^2-r^2)`
`=((R^2-r^2)(4piR^2-18pir^2)-r(4piR^2-6pir^3))/(R^2-r^2)^(3/2)`
`=(4piR^4-22pir^2R^2+12pir^4+4pir^2R^2)/(R^2-r^2)^(3/2)`
Now, it can be observed that when `r^2=(2RR62)/3,(d^2V)/(dr^2)<0`
The volume is the maximum when `r^2=(2R^2)/3`
Maximum volume = V = `pih((4R^2 - h^2)/4)`
`h = 2R/sqrt3`
`V_(max) = pi xx 2R/sqrt3 ((4R^2 - 4R^2/3)/4)`
` = (2piR)/sqrt3 . (2R^2)/3 = (4piR^3)/(3sqrt3)` cubic units
Hence, the volume of the cylinder is at its maximum when the height of the cylinder is `(2R)/3`
उत्तर २
Let the radius of the sphere, OA = R
makes an angle θ with the axis of the cylinder.
Radius of cylinder = R sin θ
Height of cylinder = 2R cos θ
∴ Volume of cylinder = πr2h
V = π (R sin θ)2 × 2 R cos θ
= 2πR3 sin2 θ cos θ
On differentiating with respect to θ,
`(dV)/(d theta) = 2piR^2 [sin^2 theta (- sin theta) + cos theta * 2 sin theta cos theta]`
= 2πR3 [- sin3 θ + 2 cos2 θ sin θ]
= 2πR3 sin θ (2 cos2 θ - sin2 θ)
= 2πR3 sin θ (2 cos2 θ - 1 + cos2 θ)
= 2πR3 sin θ (3 cos2 θ - 1)
For maximum and minimum, `(dV)/(d theta) = 0`
⇒ 2πR3 sin θ (3 cos2 θ - 1) = 0
3 cos2 θ - 1 = 0 या `cos^2 theta = 1/3`
`therefore cos theta = 1/sqrt3`
At `cos theta = 1/sqrt3` the sign of `(dV)/(d theta)` changes from positive to negative when θ passes through cos θ = `1/sqrt3`.
V is maximum at `=> cos theta = 1/sqrt3`.
Height = 2 R cos θ = 2R `* 1/sqrt3 = (2R)/3`
∴ Maximum volume of cylinder = 2πR3 sin2 θ cos θ
`= 2piR^3 (sqrt2/sqrt3)^2 1/sqrt3 ...[because cos theta = 1/sqrt3, sin theta = sqrt2/sqrt3]`
`= 2piR^3 xx 2/3 * 1/sqrt3`
`= (4 piR^3)/(3 sqrt3)` square unit.
APPEARS IN
संबंधित प्रश्न
Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x).
Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]
Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x2
Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`
Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.
Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20
Find the maximum and minimum of the following functions : f(x) = `logx/x`
Divide the number 20 into two parts such that sum of their squares is minimum.
Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x
The function f(x) = x log x is minimum at x = ______.
Divide the number 20 into two parts such that their product is maximum
If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
The function y = 1 + sin x is maximum, when x = ______
Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
The function `"f"("x") = "x" + 4/"x"` has ____________.
The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is
If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.
A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?
Solution: Let Mr. Rane order x chairs.
Then the total price of x chairs = p·x = (2x2 - 12x- 192)x
= 2x3 - 12x2 - 192x
Let f(x) = 2x3 - 12x2 - 192x
∴ f'(x) = `square` and f''(x) = `square`
f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0
∴ f is minimum when x = 8
Hence, Mr. Rane should order 8 chairs for minimum cost of deal.
The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.
Solution: Let x cm and y cm be the length and breadth of a rectangle.
Then its area is xy = 50
∴ `y =50/x`
Perimeter of rectangle `=2(x+y)=2(x+50/x)`
Let f(x) `=2(x+50/x)`
Then f'(x) = `square` and f''(x) = `square`
Now,f'(x) = 0, if x = `square`
But x is not negative.
∴ `x = root(5)(2) "and" f^('')(root(5)(2))=square>0`
∴ by the second derivative test f is minimum at x = `root(5)(2)`
When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`
∴ `x=root(5)(2) "cm" , y = root(5)(2) "cm"`
Hence, rectangle is a square of side `root(5)(2) "cm"`