Advertisements
Advertisements
प्रश्न
Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.` Also, find the maximum volume.
उत्तर १
Given that the radius of the sphere is R,.
Let r and h be the radius and height of the inscribed cylinder, respectively.
From the given figure, we have `h=2sqrt(R^2-r^2)`
The volume (V) of the cylinder is given by,
`V=pir^2h=2pir^2sqrt(R^2-r^2)`
`therefore (dV)/(dr)=4pirsqrt(R^2-r^2)+(2pir^2(-2r))/(2sqrt(R^2-r^2))`
`=(4pirR^2-6pir^3)/sqrt(R^2-r^2)`
for maxima or minima, `(dV)/(dr) =0 `
`(4pirR^2-6pir^3)=0`
`r^2=(2R^2)/3`
Now `,(d^2V)/(dr^2)=(sqrt(R^2-r^2)(4piR^2-18pir^2)-(4piR^2-6pir^3)(-2r)/(2sqrt(R^2-r^2)))/(R^2-r^2)`
`=((R^2-r^2)(4piR^2-18pir^2)-r(4piR^2-6pir^3))/(R^2-r^2)^(3/2)`
`=(4piR^4-22pir^2R^2+12pir^4+4pir^2R^2)/(R^2-r^2)^(3/2)`
Now, it can be observed that when `r^2=(2RR62)/3,(d^2V)/(dr^2)<0`
The volume is the maximum when `r^2=(2R^2)/3`
Maximum volume = V = `pih((4R^2 - h^2)/4)`
`h = 2R/sqrt3`
`V_(max) = pi xx 2R/sqrt3 ((4R^2 - 4R^2/3)/4)`
` = (2piR)/sqrt3 . (2R^2)/3 = (4piR^3)/(3sqrt3)` cubic units
Hence, the volume of the cylinder is at its maximum when the height of the cylinder is `(2R)/3`
उत्तर २
Let the radius of the sphere, OA = R
makes an angle θ with the axis of the cylinder.
Radius of cylinder = R sin θ
Height of cylinder = 2R cos θ
∴ Volume of cylinder = πr2h
V = π (R sin θ)2 × 2 R cos θ
= 2πR3 sin2 θ cos θ
On differentiating with respect to θ,
`(dV)/(d theta) = 2piR^2 [sin^2 theta (- sin theta) + cos theta * 2 sin theta cos theta]`
= 2πR3 [- sin3 θ + 2 cos2 θ sin θ]
= 2πR3 sin θ (2 cos2 θ - sin2 θ)
= 2πR3 sin θ (2 cos2 θ - 1 + cos2 θ)
= 2πR3 sin θ (3 cos2 θ - 1)
For maximum and minimum, `(dV)/(d theta) = 0`
⇒ 2πR3 sin θ (3 cos2 θ - 1) = 0
3 cos2 θ - 1 = 0 या `cos^2 theta = 1/3`
`therefore cos theta = 1/sqrt3`
At `cos theta = 1/sqrt3` the sign of `(dV)/(d theta)` changes from positive to negative when θ passes through cos θ = `1/sqrt3`.
V is maximum at `=> cos theta = 1/sqrt3`.
Height = 2 R cos θ = 2R `* 1/sqrt3 = (2R)/3`
∴ Maximum volume of cylinder = 2πR3 sin2 θ cos θ
`= 2piR^3 (sqrt2/sqrt3)^2 1/sqrt3 ...[because cos theta = 1/sqrt3, sin theta = sqrt2/sqrt3]`
`= 2piR^3 xx 2/3 * 1/sqrt3`
`= (4 piR^3)/(3 sqrt3)` square unit.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Prove that the following function do not have maxima or minima:
g(x) = logx
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = (x −1)2 + 3, x ∈[−3, 1]
Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].
Find two numbers whose sum is 24 and whose product is as large as possible.
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
Find the maximum and minimum of the following functions : f(x) = `logx/x`
A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?
The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.
Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.
The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
The maximum value of `(1/x)^x` is ______.
The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.
Find the local minimum value of the function f(x) `= "sin"^4" x + cos"^4 "x", 0 < "x" < pi/2`
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.
A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)
The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is
Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?
The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.
If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.
Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.
A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.
A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.
Solution: Let x cm and y cm be the length and breadth of a rectangle.
Then its area is xy = 50
∴ `y =50/x`
Perimeter of rectangle `=2(x+y)=2(x+50/x)`
Let f(x) `=2(x+50/x)`
Then f'(x) = `square` and f''(x) = `square`
Now,f'(x) = 0, if x = `square`
But x is not negative.
∴ `x = root(5)(2) "and" f^('')(root(5)(2))=square>0`
∴ by the second derivative test f is minimum at x = `root(5)(2)`
When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`
∴ `x=root(5)(2) "cm" , y = root(5)(2) "cm"`
Hence, rectangle is a square of side `root(5)(2) "cm"`
Divide the number 100 into two parts so that the sum of their squares is minimum.
Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).