हिंदी

The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and x3 and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three time - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.

योग

उत्तर

It is given that, the sum of the surface areas of a rectangular parallelepiped with sides x, 2x and `x/3` and a sphere is constant.

Let S be the sum of both the surface area.

∴ S = 2`(x * 2x + 2x * x/3  +x/3 * x) + 4pi"r"^2` = k

⇒ `4pi"r"^2 = "k" - 6x^2`

⇒ r2 = `("k" - 6x^2)/(4pi)`

⇒ r = `sqrt(("k" - 6x^2)/(4pi)`  .....(i)

Let V denotes the sum of the volume of both the parallelepiped and the sphere.

Then, V = `2x * x * x/3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3pi(("kk" - 6x^2)/(4pi))^(3/2)`

= `2/3 x^3 + 4/3 pi (("k" - 6x^2)/(4pi))^(3/2)`

⇒ V = `2/3 x^3 + 1/(6sqrt(pi)) ("k" - 6x^2)^(3/2)`  ....(ii)

Differentiating w.r.t. x,

`"dV"/"dx" = 2/3 * 3x^2 + 1/(6sqrt(pi)) * 3/2 * ("k" - 6x^2)^(1/2)(-12x)`

= `2x^2 - (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`  ....(iii)

Let `"dV"/"dx"` = 0

⇒ `2x^2 = (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`

⇒ `4x^4 = (9x^2)/pi ("k" - 6x^2)`

⇒ `4pix^4 = 9"k"x^2 - 54x^4`

⇒ `x^2 = (9"k")/(4pi + 54)`

⇒ x = `3sqrt("k"/(4pi + 54))`  .....(iv)

Clearly this is point minima.

When x = `3sqrt("k"/(4pi + 54))`

`"r"^2 = ("k" - 6) ((9"k")/(4pi + 54))/(4pi)`

= `("k"(4pi + 54) - 54"k")/(4pi(4pi + 54))`

= `(4"k"pi)/(4pi(4pi + 54))`

= `"k"/(4pi + 54)`

⇒ r = `sqrt("k"/(4pi + 54))`

⇒ x = 3r

Also V = `2/3x^3 + 4/3 pi"r"^3`

= `2/3(3"r")^3 + 4/3 pi"r"^3`

= `18"r"^3 + 4/3 pi"r"^3`

= `(18 + 4/3 pi)"r"^3`

= `((54 + 4pi)/3)("k"/(4pi + 54))^(3/2)`

= `"k"^(3/2)/(3(4pi + 54)^(3/2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 34 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Prove that the following function do not have maxima or minima:

f(x) = ex


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the maximum and minimum of the following functions : f(x) = x log x


Divide the number 30 into two parts such that their product is maximum.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Show that among rectangles of given area, the square has least perimeter.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The maximum value of `(1/x)^x` is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×