Advertisements
Advertisements
प्रश्न
The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it.
उत्तर
Let the base of the box be x and height be y.
`therefore Volume = x^2y = 4096/x^2` .....(1)
∴ The total surface area is given by,
`s = 2x^2+(4x)(4096/x^2)`
∴ The cost function is given by
∴ `C(x) = 4 [2x^2 + 16384/x]Rupees` .....(2)
Differentiating w.r.t. ‘x’ we get,
`dc/dx =[4x - 16384/x^2]xx4`
Let`(dc)/(dx)=0 therefore 4x = 16384/(x^2)`
`therefore x^3 = 4096 therefore x=16`
`(d^2c)/(dx^2) at (x=16)=4xx[4+(2xx16384)/4096]= 4xx(4+8)=48>0`
Also, `y= 4096/x^2 = 4096/(16)^2= 16cm `
∴ The cost for polishing the surface area is minimum when length of base is 16 cm and height of box is 16 cm.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3.
Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Prove that the following function do not have maxima or minima:
f(x) = ex
Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?
Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.
Divide the number 30 into two parts such that their product is maximum.
Divide the number 20 into two parts such that sum of their squares is minimum.
A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.
The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______
The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is
A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
The minimum value of 2sinx + 2cosx is ______.
A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.
Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) `= x sqrt(1 - x), 0 < x < 1`