Advertisements
Advertisements
प्रश्न
Solve the following system of linear equation using matrix method:
`1/x + 1/y +1/z = 9`
`2/x + 5/y+7/z = 52`
`2/x+1/y-1/z=0`
उत्तर
`Let 1/x=X; 1/y=Y;1/Z= Z`
X+Y+Z = 9 ....(1)
`2X+5Y+7Z=52` ....(2)
`2X+Y-Z =0 ` .....(3)
AX = B
`[(1, 1, 1),(2,5,7),(2,1,-1)][(X),(Y),(Z)]=[(9),(52),(0)]`
`R_2 rArr R_2- R_1 and R_3 rArr R_3 - 2R_1`
`[(1, 1, 1),(0,3,5),(0,-1,-3)][(X),(Y),(Z)]=[(9),(34),(-18)]`
`R_2rArr R_2+.3R_3`
`[(1, 1, 1),(0,0,-4),(0,-1,-3)][(X),(Y),(Z)]=[(9),(-20),(-18)]`
`[(X+Y+Z),(-4Z),(-Y -3Z)]_(3xx1) =[(9),(-20),(-18)]_(3xx1)`
∴ -4Z =-20 ⇒ Z=5
∴ -Y- 3Z = -18
∴ Y + 3Z= -18
∴Y + 15 = 18
∴ Y = 3
∴ X+Y+Z =9
∴ X + 3+ 5+9
X=1
∴ `1/X = x rArr 1/1= x` ∴ x=1
`1/Y = 3` ∴ `1/3 = y`
`1/Z = z` ∴ `z=1/5`
APPEARS IN
संबंधित प्रश्न
State, whether the following statement is true or false. If false, give a reason.
Transpose of a square matrix is a square matrix.
Given : `[(x, y + 2),(3, z - 1)] = [(3, 1),(3, 2)]`; find x, y and z.
Solve for a, b and c; if `[(a, a - b),(b + c, 0)] = [(3, -1),(2, 0)]`
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find B + C
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – C
Wherever possible, write the following as a single matrix.
`[(2, 3, 4),(5, 6, 7)] - [(0, 2, 3),(6, -1, 0)]`
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A – B = B – A
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(B . C) . A = B . (C . A)
Classify the following matrix :
`|(800),(521)|`
Classify the following matrix :
`|(11 , 3 , 0),(21 , 8 , 4),(15,5,2)|`
Find the values of a and b) if [2a + 3b a - b] = [19 2].
If M =`|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10,1)|` find M - N
If B = `|(15 , 13),(11,12),(10,17)|` , find the transpose of matrix Band If possible find the sum of the two matrices. If not possible state the reason.
If A = `|(5,"r"),("p",7)|` , c and if A + B = (9,7),(5,8) , find the values of p,q,r and s.
Evaluate the following :
`|(1 , 1),(2 , 3)| |(2 , 1),(1 , 4)|`
Evaluate the following :
`|(2,1) ,(3,2),(1 , 1)| |(1 , -2 , 1),(2 , 1 , 3)|`
Evaluate the following :
`|(0 , 1),(-1 , 2),(-2 , 0)| |(0 , -4 , 0),(3 , 0 , -1)|`
Evaluate the following :
`|(0 , 1 , 0),(2 , 0 , -3),(1 , 0 , -2)| |(1 , -2),(3 , 4),(0 , 0)|`
Write the negation of the following statements :
(a) Radha likes tea or coffee.
(b) `∃x cc` R such that x + 3 ≥ 10.
Find the adjoint of the matrix `"A" = [(2,-3),(3,5)]`
Solve the following minimal assignment problem :
Machines | Jobs | ||
I | II | III | |
M1 | 1 | 4 | 5 |
M2 | 4 | 2 | 7 |
M3 | 7 | 8 | 3 |
`[(2 , 7, 8),(-1 , sqrt(2), 0)]`
If a matrix has 8 elements, what are the possible order it can have?
Construct a 2 x 2 matrix whose elements aij are given by aij = 2i – j
Construct a 2 x 2 matrix whose elements aij are given by aij = i.j
Let `"M" xx [(1, 1),(0, 2)]` = [1 2] where M is a matrix.
- State the order of matrix M
- Find the matrix M
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the order of the matrix X
Construct a matrix A = [aij]3 × 2 whose element aij is given by
aij = `(("i" - "j")^2)/(5 - "i")`
Suppose determinant of a matrix Δ = 0, then the solution