Advertisements
Advertisements
प्रश्न
Write the negation of the following statements :
(a) Radha likes tea or coffee.
(b) `∃x cc` R such that x + 3 ≥ 10.
उत्तर
(a) Radha neither likes tea nor coffee.
(b) `∀x ∈` R, x + 3 < 10.
APPEARS IN
संबंधित प्रश्न
State, whether the following statement is true or false. If false, give a reason.
Transpose of a 2 × 1 matrix is a 2 × 1 matrix.
Solve for a, b and c; if `[(-4, a + 5),(3, 2)] = [(b + 4, 2),(3, c- 1)]`
If A = `[(8, -3)]` and B = `[(4, -5)]`; find B – A
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find B + C
Wherever possible, write the following as a single matrix.
`[(2, 3, 4),(5, 6, 7)] - [(0, 2, 3),(6, -1, 0)]`
Find x and y from the given equations:
`[(-8, x)] + [(y, -2)] = [(-3, 2)]`
Classify the following matrix :
`|(11 , 3 , 0),(21 , 8 , 4),(15,5,2)|`
Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`
If A = `|(5,"r"),("p",7)|` , c and if A + B = (9,7),(5,8) , find the values of p,q,r and s.
Evaluate the following :
`|(2 , 3),(-4 , 0)| |(3 , -2),(-1 , 4)|`
If A = `|(1,3),(3,2)|` and B = `|(-2,3),(-4,1)|` find AB
If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of P(Q + R)
If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.
Solve the equations x + y = 4 and 2x - y = 5 using the method of reduction.
Solve the following minimal assignment problem :
Machines | Jobs | ||
I | II | III | |
M1 | 1 | 4 | 5 |
M2 | 4 | 2 | 7 |
M3 | 7 | 8 | 3 |
If A = `[(1,1),(2,2)] , "B" = [(1,2),(3,4)]` then find |AB|.
Using the truth table statement, examine whether the statement pattern (p → q) ↔ (∼ p v q) is a tautology, a contradiction or a contingency.
`[(2, -1),(5, 1)]`
`[(2 ,- 4),(0 ,0),(1 , 7)]`