Advertisements
Advertisements
प्रश्न
If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.
उत्तर
A = `|(3,-2),(-1 , 4)|_(2 xx 2)` , B = `|(2"a"),(1)|_(2 xx 1)`
C = `|(-4),(5)|_(2 xx 1)` , D = `|(2),("b")|_(2 xx 1)`
AB = `|(3,-2),(-1 , 4)| |(2"a"),(1)|`
`= |(6"a" - 2),(-2"a" + 4)|_(2 xx 1)`
2C = `|(-8),(10)|`
AB + 2C = `|(6"a" - 2),(-2"a" + 4)| |(-8),(10)|`
`= |(6"a" - 10),(-2"a" + 14)|_(2 xx 1)`
4D = `|(8),(4"b")|`
Given, AB + 2C = 4D
`|(6"a" - 10),(-2"a" + 14)| = |(8) , (4"b")|`
6a - 10 = 8
⇒ 6a=18
⇒ a = 3
- 2a + 14 = 4b
⇒ -2(3 )+ 14 =4 b
⇒ 8 = 4 b
⇒ 2 = b
APPEARS IN
संबंधित प्रश्न
Given : `[(x, y + 2),(3, z - 1)] = [(3, 1),(3, 2)]`; find x, y and z.
Solve for a, b and c; if `[(-4, a + 5),(3, 2)] = [(b + 4, 2),(3, c- 1)]`
Find the inverse of the matrix A=`[[1,2],[1,3]]` using elementry transformations.
If B = `|(15 , 13),(11,12),(10,17)|` , find the transpose of matrix Band If possible find the sum of the two matrices. If not possible state the reason.
Solve the equations x + y = 4 and 2x - y = 5 using the method of reduction.
Solve the following minimal assignment problem :
Machines | Jobs | ||
I | II | III | |
M1 | 1 | 4 | 5 |
M2 | 4 | 2 | 7 |
M3 | 7 | 8 | 3 |
If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .
`[(2, -1),(5, 1)]`
Construct a 2 x 2 matrix whose elements aij are given by aij = i.j
A, B and C are three matrices each of order 5; the order of matrix CA + B2 is ______.