Advertisements
Advertisements
प्रश्न
Find the inverse of the matrix A=`[[1,2],[1,3]]` using elementry transformations.
उत्तर
A=`[[1,2],[1,3]]`
|A|=3-2
=1≠ 0
∴`A_1` exists
We have `A=A^-1=I`
`[[1,2],[1,3]]A^1`=`[[1,0],[0,1]]`
Applying` R_2→R_2-R_1`
`[[1 ,2],[0,1]]A^1=[[1,0],[-1, 1]]`
Applying `R_1→R_1-2R_2`
`[[1,0],[0,1]]A^1=[[3,-2],[-1 ,1]]`
Hence `A^-1=[[3,-2],[-1,1]]`
APPEARS IN
संबंधित प्रश्न
Solve for a, b and c; if `[(-4, a + 5),(3, 2)] = [(b + 4, 2),(3, c- 1)]`
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – C
Given : M = `[(5, -3),(-2, 4)]`, find its transpose matrix Mt. If possible, find Mt – M
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A . (B – C) = A . B – A . C
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A – B)2 = A2 – 2A . B + B2
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – B + C
Find cofactors of the elements of the matrix A = `[[-1,2],[-3,4]]`
Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`
If P = `|(8,5),(7,2)|` find P - Pt
If A = `|("p","q"),(8,5)|` , B = `|(3"p",5"q"),(2"q" , 7)|` and if A + B = `|(12,6),(2"r" , 3"s")|` , find the values of p,q,r and s.
Evaluate the following :
`|(0 , 1),(-1 , 2),(-2 , 0)| |(0 , -4 , 0),(3 , 0 , -1)|`
Evaluate the following :
`|(0 , 1 , 0),(2 , 0 , -3),(1 , 0 , -2)| |(1 , -2),(3 , 4),(0 , 0)|`
If A = `|(1,3),(3,2)|` and B = `|(-2,3),(-4,1)|` find AB
`[(2, -1),(5, 1)]`
`[(0, 0, 0),(0, 0, 0)]`
Construct a matrix A = [aij]3 × 2 whose element aij is given by
aij = i – 3j
Suppose determinant of a matrix Δ = 0, then the solution
Event A: Order of matrix A is 3 × 5.
Event B: Order of matrix B is 5 × 3.
Event C: Order of matrix C is 3 × 3.
Product of which two matrices gives a square matrix.