हिंदी

Find the Inverse of the Matrix A= [ 1 2 1 3 ] Using Elementry Transformations. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of the matrix A=`[[1,2],[1,3]]` using elementry transformations.  

उत्तर

A=`[[1,2],[1,3]]` 

|A|=3-2

   =1≠ 0 

∴`A_1` exists

We have `A=A^-1=I` 

`[[1,2],[1,3]]A^1`=`[[1,0],[0,1]]` 

Applying` R_2→R_2-R_1` 

`[[1 ,2],[0,1]]A^1=[[1,0],[-1, 1]]` 

Applying `R_1→R_1-2R_2` 

`[[1,0],[0,1]]A^1=[[3,-2],[-1 ,1]]` 

Hence `A^-1=[[3,-2],[-1,1]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Solve for a, b and c; if `[(-4, a + 5),(3, 2)] = [(b + 4, 2),(3, c- 1)]`


If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – C


Given : M = `[(5, -3),(-2, 4)]`, find its transpose matrix Mt. If possible, find Mt – M


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

A . (B – C) = A . B – A . C


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

(A – B)2 = A2 – 2A . B + B2


If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – B + C


Find cofactors of the elements of the matrix A = `[[-1,2],[-3,4]]`


Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`


If P = `|(8,5),(7,2)|` find  P - Pt


If A = `|("p","q"),(8,5)|` , B = `|(3"p",5"q"),(2"q" , 7)|` and if A + B = `|(12,6),(2"r" , 3"s")|` , find the values of p,q,r and s.


Evaluate the following :

`|(0 , 1),(-1 , 2),(-2 , 0)|  |(0 , -4 , 0),(3 , 0 , -1)|`


Evaluate the following :

`|(0 , 1 , 0),(2 , 0 , -3),(1 , 0 , -2)|  |(1 , -2),(3 , 4),(0 , 0)|`


If A = `|(1,3),(3,2)|` and B = `|(-2,3),(-4,1)|`   find AB


`[(2, -1),(5, 1)]`


`[(0, 0, 0),(0, 0, 0)]`


Construct a matrix A = [aij]3 × 2 whose element aij is given by

aij = i – 3j


Suppose determinant of a matrix Δ = 0, then the solution


Event A: Order of matrix A is 3 × 5.

Event B: Order of matrix B is 5 × 3.

Event C: Order of matrix C is 3 × 3.

Product of which two matrices gives a square matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×