हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

Suppose determinant of a matrix Δ = 0, then the solution - Economics

Advertisements
Advertisements

प्रश्न

Suppose determinant of a matrix Δ = 0, then the solution

विकल्प

  • Exists

  • Does not exist

  • is infinity

  • is zero

MCQ

उत्तर

Does not exist

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Methods for Economics - Model Questions - Part A [पृष्ठ २७०]

APPEARS IN

सामाचीर कलवी Economics [English] Class 11 TN Board
अध्याय 12 Mathematical Methods for Economics
Model Questions - Part A | Q 10 | पृष्ठ २७०

संबंधित प्रश्न

If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – B + C


If M = `[(2,1),(1,-2)] `; find M2, M3 and M5.


Find the inverse of the matrix A=`[[1,2],[1,3]]` using elementry transformations.  


Find cofactors of the elements of the matrix A = `[[-1,2],[-3,4]]`


Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`


If P = `|(8,5),(7,2)|` find  P - Pt


If A = `|(5,"r"),("p",7)|` , c and if A + B = (9,7),(5,8) , find the values of p,q,r and s.


If A = `|("p","q"),(8,5)|` , B = `|(3"p",5"q"),(2"q" , 7)|` and if A + B = `|(12,6),(2"r" , 3"s")|` , find the values of p,q,r and s.


Evaluate the following :

`|(2,1) ,(3,2),(1 , 1)|  |(1 , -2 , 1),(2 , 1 , 3)|` 


If A = `|(1,3),(3,2)|` and B = `|(-2 , 3),(-4 , 1)|`  find BA


If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.


Let A = `|(3 , 2),(0 ,5)|` and B = `|(1 ,0),(1 ,2)|` , find (i) (A + B)(A - B)  (ii) A2 - B2 . Is (i) equal to (ii) ?


If A = `[(1,2,3), (2,k,2), (5,7,3)]` is a singular matrix then find the value of 'k'.


If A = `[(1,1),(2,2)] , "B" = [(1,2),(3,4)]` then find |AB|.


Using the truth table statement, examine whether the statement pattern (p → q) ↔ (∼ p v q) is a tautology, a contradiction or a contingency.


If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .


`[(2, -1),(5, 1)]`


Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the order of the matrix X


Construct a matrix A = [aij]3 × 2 whose element aij is given by

aij = `(("i" + "j")^3)/5`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×