हिंदी

If a = 1 1 2 2 , B = 1 2 3 4 Then Find |Ab|. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1,1),(2,2)] , "B" = [(1,2),(3,4)]` then find |AB|.

योग

उत्तर

AB = `[(1,1),(2,2)][(1,2),(3,4)]`

AB = `[(4,6),(8,12)]`

∴ `|"AB"| = |(4,6),(8,12)|`

∴ |AB| = 48 - 48

⇒ |AB| = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

State, whether the following statement is true or false. If false, give a reason.

Transpose of a square matrix is a square matrix.


Given : `[(x, y + 2),(3, z - 1)] = [(3, 1),(3, 2)]`; find x, y and z.


Find x and y from the given equations:

`[(-8, x)] + [(y, -2)] = [(-3, 2)]`


Given : M = `[(5, -3),(-2, 4)]`, find its transpose matrix Mt. If possible, find Mt – M


Evaluate:     

`2[(-1      0)/(2 -3)]  +[(3      3)/(5    0)]`


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

A + B = B + A


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

A2 – B2 = (A + B) (A – B)


Classify the following matrix :

`|(11 , 3 , 0),(21 , 8 , 4),(15,5,2)|`


If A = `|("p","q"),(8,5)|` , B = `|(3"p",5"q"),(2"q" , 7)|` and if A + B = `|(12,6),(2"r" , 3"s")|` , find the values of p,q,r and s.


Evaluate the following :

`|(0 , 1),(-1 , 2),(-2 , 0)|  |(0 , -4 , 0),(3 , 0 , -1)|`


If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.


If A = `[(1,2), (1,3)]`, find A2 - 3A


Solve the equations x + y = 4 and 2x - y = 5 using the method of reduction.


Solve the following minimal assignment problem : 

Machines                                 Jobs
I II III
M1 1 4 5
M2 4 2 7
M3 7 8 3

`[(0, 0, 0),(0, 0, 0)]`


If a matrix has 8 elements, what are the possible order it can have?


Construct a 2 x 2 matrix whose elements aij are given by aij = 2i – j


Construct a matrix A = [aij]3 × 2 whose element aij is given by

aij = `(("i" + "j")^3)/5`


Suppose determinant of a matrix Δ = 0, then the solution


Event A: Order of matrix A is 3 × 5.

Event B: Order of matrix B is 5 × 3.

Event C: Order of matrix C is 3 × 3.

Product of which two matrices gives a square matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×