हिंदी

Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be: f(x) =x1-x,0<x<1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`

योग

उत्तर

Given function f(x) `= x sqrt(1 - x), 0 < x < 1` ....(1)

`therefore f'(x) = 1. sqrt(1 - x) + 1/(2 sqrt(1 - x))(- 1) * x`

`= (2 (1 - x) - x)/(2 sqrt(1 - x))`

`= (2 - 3x)/(2 sqrt(1 - x))`

If f'(x) = 0 then `(2 - 3x)/(2 sqrt (1 - x)) = 0,`

`therefore x = 2/3`

At `x = 2/3`, the sign changes from positive to negative when x passes through x `= 2/3`

`therefore` There is a local maximum at the point f

Thus, the local maximum value is f(x) = f `(2/3) = 2/3 sqrt(1 - 2/3) = 2/3 sqrt(1/sqrt3)`            ... [Substituting equation (1), x = `2/3,` in (1)]

`= 2/(2 sqrt3) = (2sqrt3)/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Find the maximum area of an isosceles triangle inscribed in the ellipse  `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Divide the number 20 into two parts such that their product is maximum.


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


If x is real, the minimum value of x2 – 8x + 17 is ______.


The maximum value of `(1/x)^x` is ______.


Find all the points of local maxima and local minima of the function f(x) = (x - 1)(x + 1)2


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


Range of projectile will be maximum when angle of projectile is


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

A function f(x) is maximum at x = a when f'(a) > 0.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


The minimum value of 2sinx + 2cosx is ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×