हिंदी

Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.

योग

उत्तर

Given function h(x) = sin (2x) + 5

We know that -1 ≤ sin 2x ≤ 1

⇒ 4 ≤ 5 + sin 2x ≤ 6

Maximum value of sin 2x = 1

∴ h(x) = Maximum value of sin 2x + 5, 1 + 5 = 6

Minimum value of sin 2x = - 1

∴ h(x) = Minimum value of sin 2x + 5 = -1 + 5 = 4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.5 | Q 2.3 | पृष्ठ २३२

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = x log x


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The maximum value of the function f(x) = `logx/x` is ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×