Advertisements
Advertisements
प्रश्न
A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area.
उत्तर
Breadth = x, length = `2sqrt("r"^2-"x"^2)`
A = `2"x"sqrt("r"^2-"x"^2)`
`"dA"/"dx" = 2 sqrt("r"^2-"x"^2) + (2"x")/(2sqrt("r"^2-"x"^2) )(-2"x")`
`("d"^2"A")/("dx"^2) = 2/(2sqrt("r"^2-"x"^2))( -2"x") - (4"x")/sqrt("r"^2-"x"^2) +(2"x"^2)/(2("r"^2-"x"^2)^(3/2)) (-2"x")<0`
Hence, area is maximum
Point of maxima is given by : `"dA"/"dx" = 0`
⇒ `(2("r"^2 -"x"^2 -"x"^2))/sqrt("r"^2-"x"^2) = 0`
⇒ `"x"="r"/sqrt2`
∴ Breadth =`"r"/sqrt2,` length =`sqrt2"r"`
Maximum area = r2
APPEARS IN
संबंधित प्रश्न
If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.
A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.
Prove that the following function do not have maxima or minima:
h(x) = x3 + x2 + x + 1
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is `Sin^(-1) (1/3).`
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x
Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
If f(x) = x.log.x then its maximum value is ______.
The function f(x) = x log x is minimum at x = ______.
Find the local maximum and local minimum value of f(x) = x3 − 3x2 − 24x + 5
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.
Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].
The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.
Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.