हिंदी

Evaluate: Int (Sin"X"+Cos"X")/(Sqrt(9+16sin2"X")) "Dx" - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`

योग

उत्तर

`"I" =int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`

Let sin x - cos x = t

(cos x + sin x) dx = dt 

(sin x - cos x)2 = t2

sin2x + cos2x - 2 sin x cos x = t2

⇒  1 - sin 2x = t2

sin 2x = 1 - t2

`"I" = int "dt"/sqrt(9+16(1-"t"^2)`

` = int "dt"/sqrt(9+16-16t^2)`

` = int "dt"/sqrt(25-16t^2)`

`= int "dt"/sqrt(16(25/16-"t"^2))`

`=1/4 int "dt"/(sqrt((5/4)^2)-t^2)`

`= 1/4sin^-1  "t"/((5/4))`

`=1/4 sin^-1  ((4"t")/5)`

`"I" = 1/4 sin^-1 ((4(sin"x"-cos"x"))/2) + "C"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×