Advertisements
Advertisements
प्रश्न
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
उत्तर
`"I" =int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Let sin x - cos x = t
(cos x + sin x) dx = dt
(sin x - cos x)2 = t2
sin2x + cos2x - 2 sin x cos x = t2
⇒ 1 - sin 2x = t2
sin 2x = 1 - t2
`"I" = int "dt"/sqrt(9+16(1-"t"^2)`
` = int "dt"/sqrt(9+16-16t^2)`
` = int "dt"/sqrt(25-16t^2)`
`= int "dt"/sqrt(16(25/16-"t"^2))`
`=1/4 int "dt"/(sqrt((5/4)^2)-t^2)`
`= 1/4sin^-1 "t"/((5/4))`
`=1/4 sin^-1 ((4"t")/5)`
`"I" = 1/4 sin^-1 ((4(sin"x"-cos"x"))/2) + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.