Advertisements
Advertisements
प्रश्न
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
उत्तर
`I = int_1^4 (1 + x +e^(2x)) dx = int_1^4 (1+x) dx + int _1^4 e^(2x) dx`
`= I_1 +I_2`
`h = (b-a)/n = (4-1)/n = 3/n `
`I_1 = int_1^4 (1 + x) dx = lim_(n->oo)[3/n[f(1) + f(1 +3/n) + ....... f (1 +((n-1))/n 3)]]`
` = 3"lim_(n-> oo) [1/n[(1 + 1) +(1+(1+3/n)+....)(1+((n-1))/n3)]]`
` = 3"lim_(n-> oo) [(2n)/n + 1/n [0.(3/n)+1(3/n)+....(n-1) 3/n]]`
` = 3"lim_(n-> oo) [2 + 1/n^2 [3 + 2(3) + .... (n -1 )3]]`
` = 3"lim_(n-> oo) [2 +3/n^2 [((n-1)n)/2]]`
` = 3["lim_(n-> oo) (2+3/2(1-1/n))]`
`=3(2+3/2)=6 +9/2=21/2`
`I_2 = int_1^4 e^(2x) dx `
`I_2 = "lim_(n-> oo) [3/n[f(1)+......+f(1+((n-1))/n3)]]`
` = "lim_(n-> oo) [3/n[e^2 + e^(2(1+3/n)) + ......e^(2(1+((n-1))/n 3)]]]`
`= 3e^2 "lim_(n -> oo )[1/n[1 + e^(2 (3/n))+....e^(2(3((n-1))/n))]]`
` = 3e^2 lim_(n -> oo ) 1/n [(e^(2(3/n)^n) -1)/(e^(2(3/n)^n)-1) ]`
` = 3e^2 lim_(n -> oo ) 1/n[(e^6 -1)/(e^(6/n) -1)]`
` = 3e^2(e^6 - 1) "lim_(n -> oo) (1/n)/(e^(6/n)-1)`
`=3e^2 (e^6 - 1) "lim_(n -> oo )((-1)/n^2)/(e^(6/n)((-1)/n^2)xx6)`
`=1/2e^2 (e^6-1)= (e^8 - e^2 )/2`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?