हिंदी

Evaluate the following as limit of sum: d∫02(x2+3)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`

योग

उत्तर

We know that `int_"a"^"b" "f"(x) "d"x = lim_("n" -> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`

For I = `int_0^2 (x^2 + 3) "d"x`

We have a = 0 and b = 2

I = `int_00^2 (x^2 + 3) "d"x`

Here, a = 0, b = 2 and h = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`

⇒ nh = 2

And f(x) = `(x^2 + 3)`

∴ I = `int_0^2 (x^2 + 3)"d"x = lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`

= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("rh")`

= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) (3 + "r"^2"h"^2)`

= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n" - 1)("n" - 1 + 1)(2"n" - 2 + 1))/6)]`

= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n"^2 - "n")(2"n" - 1))/6)]`

= `lim_("h" -> 0) "h" [3"n" + "h"^2/6 (2"n"^3 - 3"n"^2 + "n")]`

= `lim_("h" -> 0) [3"nh" + (2"n"^3"h"^3 - 3"n"^2"h"^2 * "h" + "nh" * "h"^2)/6]`

= `lim_("h" -> 0) [3.2 + (2.2^3 - 3.2^2 * "h" + 2 * "h"^2)/6]`

= `6 + 16/6`

= `26/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 27 | पृष्ठ १६५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×