Advertisements
Advertisements
प्रश्न
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
उत्तर
We know that `int_"a"^"b" "f"(x) "d"x = lim_("n" -> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`
For I = `int_0^2 (x^2 + 3) "d"x`
We have a = 0 and b = 2
I = `int_00^2 (x^2 + 3) "d"x`
Here, a = 0, b = 2 and h = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`
⇒ nh = 2
And f(x) = `(x^2 + 3)`
∴ I = `int_0^2 (x^2 + 3)"d"x = lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`
= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("rh")`
= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) (3 + "r"^2"h"^2)`
= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n" - 1)("n" - 1 + 1)(2"n" - 2 + 1))/6)]`
= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n"^2 - "n")(2"n" - 1))/6)]`
= `lim_("h" -> 0) "h" [3"n" + "h"^2/6 (2"n"^3 - 3"n"^2 + "n")]`
= `lim_("h" -> 0) [3"nh" + (2"n"^3"h"^3 - 3"n"^2"h"^2 * "h" + "nh" * "h"^2)/6]`
= `lim_("h" -> 0) [3.2 + (2.2^3 - 3.2^2 * "h" + 2 * "h"^2)/6]`
= `6 + 16/6`
= `26/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.