मराठी

Evaluate the following as limit of sum: d∫02(x2+3)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`

बेरीज

उत्तर

We know that `int_"a"^"b" "f"(x) "d"x = lim_("n" -> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`

For I = `int_0^2 (x^2 + 3) "d"x`

We have a = 0 and b = 2

I = `int_00^2 (x^2 + 3) "d"x`

Here, a = 0, b = 2 and h = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`

⇒ nh = 2

And f(x) = `(x^2 + 3)`

∴ I = `int_0^2 (x^2 + 3)"d"x = lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`

= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("rh")`

= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) (3 + "r"^2"h"^2)`

= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n" - 1)("n" - 1 + 1)(2"n" - 2 + 1))/6)]`

= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n"^2 - "n")(2"n" - 1))/6)]`

= `lim_("h" -> 0) "h" [3"n" + "h"^2/6 (2"n"^3 - 3"n"^2 + "n")]`

= `lim_("h" -> 0) [3"nh" + (2"n"^3"h"^3 - 3"n"^2"h"^2 * "h" + "nh" * "h"^2)/6]`

= `lim_("h" -> 0) [3.2 + (2.2^3 - 3.2^2 * "h" + 2 * "h"^2)/6]`

= `6 + 16/6`

= `26/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 27 | पृष्ठ १६५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×