Advertisements
Advertisements
प्रश्न
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
उत्तर
We know that `int_"a"^"b" "f"(x)"d"x = lim_("n" -> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`
For I = `int_0^2 "e"^x "d"x`
We have a = 0 and b = 2
∴ h = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`
∴ I = `int_0^2 "e"^x "d"x`
= `lim_("h" -> 0) "h" [1 + "e"^"h" + "e"^(2"h") + ... + "e"^(("n" - 1)"h")]`
= `lim_("h" -> 0) "h" [(1 * ("e"^"h")^"n" - 1)/("e"^"h" - 1)]`
= `lim_("h" -> 0) "h" (("e"^("nh") - 1)/("e"^"h" - 1))`
= `lim_("h" -> 0) (("e"^2 - 1)/("e"^"h" - 1))`
= `"e"^2 lim_("h" -> 0) "h"/("e"^"h" - 1)`
= e2 – 1
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
`int dx/(e^x + e^(-x))` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.