मराठी

Evaluate the definite integral: ∫14[|x-1|+|x-2|+|x-3|]dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`

बेरीज

उत्तर

Let `I = int_1^4 (|x - 1| + |x - 2| + |x - 3|)  dx`

Define,

|x - 1| = x -1, when x - 1 ≥ 0, i.e., x ≥ 1

|x - 2| = x -2, when x - 2 ≥ 0, i.e., x ≥ 2

|x - 2| = - (x - 2), when x - 2 ≤ 0, i.e., x ≤ 2

|x - 3| = - (x - 3), when x - 3 ≤ 0, i.e., x ≤ 3

|x - 3| = (x - 3), when x - 3 ≥ 0, i.e, x ≥ 3

⇒ `I = int_1^4 (x - 1)  dx - int_1^2 (x - 2)  dx + int_2^4 (x - 2)  dx  - int_1^3 (x - 3) dx + int_3^4 (x - 3)  dx`

`= [x^2/2 - x]_1^4 - [x^2/2 - 2x]_1^2 + [x^2/2 - 2x]_2^4 - [x^2/2 - 3x]_1^3 + [x^2/2 - 3x]_3^4`

`= [(16/2 - 1/2) - (4 - 1)] - [(4/2 - 1/2) - (4 - 2)] + [(16/2 - 1/2) - (8 - 4) - [(9/2 - 1/2) - (9 - 3)] + [(16/2 - 9/2) - (12 - 9)]`

`= [15/2 - 3/2 + 12/2 - 8/2 + 7/2] + [-3 + 2 - 4 + 6 - 3]`

`= [23/2] + [-2]`

`= 19/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 33 | पृष्ठ ३५३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^1 xe^x dx = 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


` ∫  log x / x  dx `
 
 
 

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×