मराठी

Evaluate the definite integral: ∫0π2cos2xdxcos2x+4sin2x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`

बेरीज

उत्तर

Let `I = int_0^(pi/2) (cos^2 x )/(cos^2 x + 4 sin^2 x)`dx

`int_0^(pi/2) (cos^2 x)/(cos^2 x + 4(1 - cos^2 x))`dx

`= int_0^(pi/2) (cos^2x)/(4 - 3 cos^2 x)`dx

`= - 1/3 int_0^(pi//2)  (4 - 3 cos^2 x - 4)/(4 - 3 cos^2 x)`dx

`= - 1/3 int_0^(pi/2) (1 - 4/(4 - 3 cos^2 x))`dx

`= - 1/3 int_0^(pi/2) 1 * dx + 4/3 int_0^(pi/2) dx/(4 - 3 cos^2 x)`

`= - 1/3 (pi/2) + 4/3 int_0^(pi/2) (sec^2x)/(4 sec^2 x - 3)`dx

`= - pi/6 + 4/3 int_0^(pi/2) (sec^2 x)/(4 (1 + tan^2 x - 3))`dx

⇒ Put tan x = t

sec2 x dx = dt

When x = 0, t = 0 and when x = `pi/2, t = oo`

I = `- pi/6 + 4/3 int_0^oo dt/(4(1 + t^2) - 3)`

`= pi/6 + 4/3 int_0^oo dt/(4t^2 + 1)`

`= - pi/6 + 4/3 * 1/4 int_0^oo dt/(t^2 + 1/4)`

`= - pi/6 + 1/3 * 2 [tan^-1  t/(1//2)]_0^oo`

`= - pi/6 + 2/3 * [tan^-1 2t]_0^oo`

`= - pi/6 + 2/3 [tan^-1 oo - tan^-1 0]`

`= - pi/6 + 2/3 * [pi/2 - 0]`

`= - pi/6 + pi/3`

`= pi/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 27 | पृष्ठ ३५३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×