Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
उत्तर
Let `I = int_0^(pi/2) (cos^2 x )/(cos^2 x + 4 sin^2 x)`dx
`int_0^(pi/2) (cos^2 x)/(cos^2 x + 4(1 - cos^2 x))`dx
`= int_0^(pi/2) (cos^2x)/(4 - 3 cos^2 x)`dx
`= - 1/3 int_0^(pi//2) (4 - 3 cos^2 x - 4)/(4 - 3 cos^2 x)`dx
`= - 1/3 int_0^(pi/2) (1 - 4/(4 - 3 cos^2 x))`dx
`= - 1/3 int_0^(pi/2) 1 * dx + 4/3 int_0^(pi/2) dx/(4 - 3 cos^2 x)`
`= - 1/3 (pi/2) + 4/3 int_0^(pi/2) (sec^2x)/(4 sec^2 x - 3)`dx
`= - pi/6 + 4/3 int_0^(pi/2) (sec^2 x)/(4 (1 + tan^2 x - 3))`dx
⇒ Put tan x = t
sec2 x dx = dt
When x = 0, t = 0 and when x = `pi/2, t = oo`
I = `- pi/6 + 4/3 int_0^oo dt/(4(1 + t^2) - 3)`
`= pi/6 + 4/3 int_0^oo dt/(4t^2 + 1)`
`= - pi/6 + 4/3 * 1/4 int_0^oo dt/(t^2 + 1/4)`
`= - pi/6 + 1/3 * 2 [tan^-1 t/(1//2)]_0^oo`
`= - pi/6 + 2/3 * [tan^-1 2t]_0^oo`
`= - pi/6 + 2/3 [tan^-1 oo - tan^-1 0]`
`= - pi/6 + 2/3 * [pi/2 - 0]`
`= - pi/6 + pi/3`
`= pi/6`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.