हिंदी

Evaluate the definite integral: ∫0π2cos2xdxcos2x+4sin2x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the definite integral:

0π2cos2xdxcos2x+4sin2x

योग

उत्तर

Let I=0π2cos2xcos2x+4sin2xdx

0π2cos2xcos2x+4(1-cos2x)dx

=0π2cos2x4-3cos2xdx

=-130π/2 4-3cos2x-44-3cos2xdx

=-130π2(1-44-3cos2x)dx

=-130π21dx+430π2dx4-3cos2x

=-13(π2)+430π2sec2x4sec2x-3dx

=-π6+430π2sec2x4(1+tan2x-3)dx

⇒ Put tan x = t

sec2 x dx = dt

When x = 0, t = 0 and when x = π2,t=

I = -π6+430dt4(1+t2)-3

=π6+430dt4t2+1

=-π6+43140dtt2+14

=-π6+132[tan-1 t1/2]0

=-π6+23[tan-12t]0

=-π6+23[tan-1-tan-10]

=-π6+23[π2-0]

=-π6+π3

=π6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.12 | Q 27 | पृष्ठ ३५३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate -12(e3x+7x-5)dx as a limit of sums


Evaluate the following definite integrals as limit of sums.

abxdx


Evaluate the following definite integrals as limit of sums. 

23x2dx


Evaluate the following definite integrals as limit of sums -11exdx


Evaluate the definite integral:

π6π3 sinx+cosxsin2xdx


Evaluate the definite integral:

0π4sinx+ cosx9+16sin2xdx


Evaluate the definite integral:

0π2sin2xtan-1(sinx)dx


Evaluate the definite integral:

14[|x-1|+|x-2|+|x-3|]dx


Prove the following:

01xexdx=1


Prove the following:

-11x17cos4xdx=0


Evaluate  01e2-3xdx as a limit of a sum.


dxex+e-x is equal to ______.


cos2x(sinx+cosx)2dx is equal to ______.


Choose the correct answers The value of 01tan-1 2x-11+x-x2 dx is 

(A) 1

(B) 0

(C) –1

(D) π4


Evaluate : 13(x2+3x+ex)dx as the limit of the sum.


 logxx dx
 
 
 

4x+32x2+3x+1dx

ecos2xsin 2x  dx

secxlog(secx+tanx)dx

 ∫  cosec x  log(cosec xcotx)dx

logxsin{1+(logx)2}xdx

sec4 x   tan x dx

4x35x2dx

01(xex+cosπx4)dx

 


0πsinxsinx+cosxdx

π/2π/2sin4x dx

tanxsinxcosxdx


Evaluate the following as limit of sum:

02(x2+3)dx


Evaluate the following:

0π2tanx1+m2tan2xdx


Evaluate the following:

01xdx1+x2


Evaluate the following:

012dx(1+x2)1-x2  (Hint: Let x = sin θ)


The value of limx0[ddx0x2sec2xdxddx(xsinx)] is equal to


If f" = C, C ≠ 0, where C is a constant, then the value of limx0f(x)-2f(2x)+3f(3x)x2 is


limn{(1+1n2)2n2(1+22n2)4n2(1+32n2)6n2...(1+n2n2)2nn2} is equal to ______.


limn12n[11-12n+11-22n+11-32n+......+11-2n-12n] is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.