Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\sec x \cdot \log \left( \text{sec x} + \text{tan x} \right) dx\]
\[ \text{Let log} \left( \sec x + \tan x \right) = t\]
\[ \Rightarrow \frac{\left( \sec x \tan x + \sec^2 x \right)}{\left( \sec x + \tan x \right)} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{\sec x \left( \sec x + \tan x \right)}{\left( \sec x + \tan x \right)} dx = dt\]
\[Now, \int\sec x \cdot \text{log }\left( \sec x + \tan x \right) dx\]
\[ = \ ∫ t . dt\]
\[ = \frac{t^2}{2} + C\]
\[ = \frac{\left[ \text{log} \left( \text{sec x} + \tan x \right) \right]^2}{2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^1 xe^x dx = 1`
`int dx/(e^x + e^(-x))` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Evaluate the following integrals as limit of sums:
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.