हिंदी

Solve: (X2 – Yx2) Dy + (Y2 + Xy2) Dx = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 

योग

उत्तर

Given differential equation is :

(x2 - yx2)dy + (y2 + xy2)dx = 0


⇒ x2(1-y)dy + y2 (1+x)dx = 0 


⇒ `int(1-"y")/"y"^2 "dy" + int(1+"x")/"x"^2 "dx" = 0`

⇒ `int(1/"y"^2 - 1/"y")"dy" + int(1/"x"^2 + 1/"x")"dx" = 0`

⇒ `int"y"^-2"dy" - "log" "y" + int"x"^-2"dx" + "log x" = 0`


⇒ `"y"^-1/-1 - "log y" + "x"^-1/-1 + "log x" = C`


⇒ `-1/"y" - "log y" - 1/"x" + "log x" = C`


⇒ `- 1/"x" - 1/"y" + "log"("x"/"y") = C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Prove the following:

`int_0^1 xe^x dx = 1`


`int dx/(e^x + e^(-x))` is equal to ______.


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


What is the derivative of `f(x) = |x|` at `x` = 0?


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×