Advertisements
Advertisements
प्रश्न
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
उत्तर
Given differential equation is :
(x2 - yx2)dy + (y2 + xy2)dx = 0
⇒ x2(1-y)dy + y2 (1+x)dx = 0
⇒ `int(1-"y")/"y"^2 "dy" + int(1+"x")/"x"^2 "dx" = 0`
⇒ `int(1/"y"^2 - 1/"y")"dy" + int(1/"x"^2 + 1/"x")"dx" = 0`
⇒ `int"y"^-2"dy" - "log" "y" + int"x"^-2"dx" + "log x" = 0`
⇒ `"y"^-1/-1 - "log y" + "x"^-1/-1 + "log x" = C`
⇒ `-1/"y" - "log y" - 1/"x" + "log x" = C`
⇒ `- 1/"x" - 1/"y" + "log"("x"/"y") = C`
APPEARS IN
संबंधित प्रश्न
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Prove the following:
`int_0^1 xe^x dx = 1`
`int dx/(e^x + e^(-x))` is equal to ______.
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
What is the derivative of `f(x) = |x|` at `x` = 0?
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.