हिंदी

Evaluate the following as limit of sum: ed∫02exdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`

योग

उत्तर

We know that `int_"a"^"b" "f"(x)"d"x = lim_("n" -> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`

For I = `int_0^2 "e"^x "d"x`

We have a = 0 and b = 2

∴ h = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`

∴ I = `int_0^2 "e"^x "d"x`

= `lim_("h" -> 0) "h" [1 + "e"^"h" + "e"^(2"h") + ... + "e"^(("n" - 1)"h")]`

= `lim_("h" -> 0) "h" [(1 * ("e"^"h")^"n" - 1)/("e"^"h" - 1)]`

= `lim_("h" -> 0) "h" (("e"^("nh") - 1)/("e"^"h" - 1))`

= `lim_("h" -> 0) (("e"^2 - 1)/("e"^"h" - 1))`

= `"e"^2 lim_("h" -> 0) "h"/("e"^"h" - 1)`

= e2 – 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 28 | पृष्ठ १६५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×